4. Sucesiones de números reales

Análisis de Variable Real

2014-2015

Índice

1.	Sucesiones y límites. Conceptos básicos	2
	1.1. Definición de sucesión	2
	1.2. Sucesiones convergentes	2
	1.3. Sucesiones acotadas	3
	1.4. Sucesiones monótonas	3
2.	Técnicas de cálculo de límites	4
	2.1. Operaciones con sucesiones	4
	2.2. Desigualdades y límites	5
	2.3. Subsucesiones	6
	2.4. Sucesiones de Cauchy	6
3.	Límites infinitos	7
	3.1. Sucesiones divergentes	7
	3.2. La recta ampliada	10
		11
4.	Límites superior e inferior. Límites subsecuenciales	13
	4.1. Límites superior e inferior	13
	4.2. Límites subsecuenciales	14
	4.3. Propiedades de los límites superior e inferior	14
5.	Apéndice: Límites de sucesiones y funciones elementales	17
	· ·	17
	5.2. Sucesiones equivalentes	18

1. Sucesiones y límites. Conceptos básicos

1.1. Definición de sucesión

Definición de sucesión

Definición 4.1.

- (I) Una *sucesión* de elementos de un conjunto es una aplicación con dominio \mathbb{N} y codominio dicho conjunto.
- (II) En particular, una *sucesión de números reales* es una función real con dominio \mathbb{N} , o sea, una aplicación $s \colon \mathbb{N} \to \mathbb{R}$.
- (III) El valor que una sucesión s toma en cada $n \in \mathbb{N}$ se suele denotar s_n en lugar de s(n) y recibe el nombre de *término* n-*ésimo* de la sucesión.

1.2. Sucesiones convergentes

Sucesiones convergentes

Definición 4.2.

- (I) Una sucesión (s_n) es *convergente* si existe un número real l tal que para todo $\varepsilon > 0$ se puede encontrar un número natural n_0 de modo que siempre que $n \ge n_0$ se verifique $|s_n l| < \varepsilon$.
- (II) Se dice entonces que el número l es *límite* de la sucesión (s_n) , y se escribe

$$l = \lim_{n \to \infty} s_n$$
 o $l = \lim_n s_n$.

(III) También decimos que (s_n) converge al número l, y lo denotaremos

$$s_n \xrightarrow[n \to \infty]{} l, \quad s_n \xrightarrow[n]{} l, \quad \text{o, sencillamente,} \quad s_n \longrightarrow l.$$

Caracterización del límite

Proposición 4.3. *Sea* $l \in \mathbb{R}$. *Dada una sucesión* (s_n) , *son equivalentes:*

- (I) (s_n) es convergente con límite l.
- (II) Se cumplen simultáneamente:
 - Si a < l, existe un $n_a \in \mathbb{N}$ tal que para todo $n \ge n_a$ es $a < s_n$, y

- $si \ l < b$, existe un $n_b \in \mathbb{N}$ tal que para todo $n \ge n_b$ es $s_n < b$.
- (III) Si a, b son números reales tales que $l \in (a, b)$, existe un número natural $n_0 \in \mathbb{N}$, tal que para todo $n \ge n_0$ es $s_n \in (a, b)$.

Corolario 4.4. Sea s_n una sucesión convergente con límite l y sea $c \in \mathbb{R}$. Se tiene:

- (I) Si existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$ es $c \le s_n$, entonces $c \le l$.
- (II) Si existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$ es $s_n \le c$, entonces $l \le c$.

Unicidad del límite

Corolario 4.5. Sea (s_n) una sucesión convergente y sean l y l' dos límites de la sucesión (s_n) . Entonces l = l'.

1.3. Sucesiones acotadas

¿Qué es una sucesión acotada?

Definición 4.6.

- (I) Una sucesión (s_n) se dice que está *acotada superiormente* si existe algún número $M \in \mathbb{R}$ tal que, para todo $n \in \mathbb{N}$, es $s_n \leq M$.
- (II) Se dice que está acotada inferiormente si existe algún número $m \in \mathbb{R}$ tal que, para todo $n \in \mathbb{N}$, es $m \leq s_n$.
- (III) Se dice que está *acotada* si lo está tanto superior como inferiormente. (Esto equivale a que exista un número K>0 tal que para todo $n\in\mathbb{N}$ es $|s_n|\leqslant K$.)

Sucesiones convergentes y sucesiones acotadas

Proposición 4.7. Toda sucesión convergente está acotada.

1.4. Sucesiones monótonas

¿Qué es una sucesión monótona?

Definición 4.8.

- (I) Una sucesión (s_n) es *creciente* si para todo $n \in \mathbb{N}$ se verifica $s_n \leq s_{n+1}$.
- (II) Una sucesión (s_n) es decreciente si para todo $n \in \mathbb{N}$ se verifica $s_n \ge s_{n+1}$.

- (III) Una sucesión (s_n) es monótona si es creciente o decreciente.
- (IV) Una sucesión (s_n) es estrictamente creciente si para todo $n \in \mathbb{N}$ se verifica $s_n < s_{n+1}$.
- (V) Una sucesión (s_n) es estrictamente decreciente si para todo $n \in \mathbb{N}$ se verifica $s_n > s_{n+1}$.
- (VI) Una sucesión (s_n) es *estrictamente monótona* si es estrictamente creciente o estrictamente decreciente.

Sucesiones monótonas y convergencia

Teorema 4.9 (de la Convergencia Monótona, de Weierstrass).

(I) Sea (s_n) una sucesión creciente. Entonces (s_n) es convergente si, y solo si, está acotada superiormente, en cuyo caso

$$\lim_{n} s_n = \sup\{ s_n \mid n \in \mathbb{N} \}.$$

(II) Sea (s_n) una sucesión decreciente. Entonces (s_n) es convergente si, y solo si, está acotada inferiormente, en cuyo caso

$$\lim_{n} s_n = \inf\{ s_n \mid n \in \mathbb{N} \}.$$

El número e

Definición 4.10. Llamamos constante de Euler o número e al límite

$$e = \lim_{n} \left(1 + \frac{1}{n} \right)^{n}.$$

2. Técnicas de cálculo de límites

2.1. Operaciones con sucesiones

Límites de la suma y el producto

Proposición 4.11. Sean (s_n) , (t_n) dos sucesiones convergentes con límites

$$l = \lim_{n} s_n, \qquad l' = \lim_{n} t_n,$$

 $y \ sea \ c \in \mathbb{R}$. Entonces

- (I) $(s_n + t_n)$ es convergente y tiene límite l + l';
- (II) $(c \cdot s_n)$ es convergente y tiene límite $c \cdot l$;
- (III) $(s_n \cdot t_n)$ es convergente y tiene límite $l \cdot l'$.

Sucesión convergentes a cero por acotadas

Proposición 4.12. Si (s_n) es una sucesión acotada y (t_n) una sucesión convergente a 0, la sucesión $(s_n \cdot t_n)$ converge a 0.

Límite del cociente

Proposición 4.13. Sea (s_n) una sucesión convergente con límite l y (t_n) una sucesión convergente con límite $l' \neq 0$. Si (u_n) es una sucesión tal que

$$u_n = \frac{s_n}{t_n}$$
 siempre que $t_n \neq 0$,

entonces (u_n) es convergente con límite l/l'.

Corolario 4.14. Sea (s_n) una sucesión convergente con límite l y (t_n) una sucesión convergente sin términos nulos y con límite $l' \neq 0$. Entonces la sucesión s_n/t_n es convergente y

$$\lim_{n} \frac{s_n}{t_n} = \frac{l}{l'}.$$

2.2. Desigualdades y límites

Relación entre límites y desigualdades

Proposición 4.15. Si (s_n) y (t_n) son dos sucesiones convergentes y existe un $n_0 \in \mathbb{N}$ tal que

$$s_n \leqslant t_n$$
, para todo $n \geqslant n_0$,

entonces

$$\lim_n s_n \leqslant \lim_n t_n.$$

El Teorema del Bocadillo

Teorema 4.16 (del Bocadillo, o de Compresión). Sean (s_n) , (t_n) y (u_n) sucesiones tales que existe un $n_0 \in \mathbb{N}$ tal que

$$s_n \leqslant t_n \leqslant u_n$$

para todo $n \ge n_0$. Si (s_n) y (u_n) son sucesiones convergentes y con el mismo límite l, es decir,

$$\lim_{n} s_n = \lim_{n} u_n = l,$$

entonces (t_n) es también convergente y tiene el mismo límite l, es decir, $\lim_n t_n = l$.

2.3. Subsucesiones

Definición formal

Definición 4.17. Dada una sucesión (s_n) , se dice que otra sucesión (t_n) es una subsucesión de (s_n) si existe una sucesión estrictamente creciente de números naturales (i_n) tal que para todo $n \in \mathbb{N}$ es $t_n = s_{i_n}$.

Límites de las subsucesiones

Proposición 4.18. Toda subsucesión de una sucesión convergente es también convergente y tiene el mismo límite.

Convergencia de términos pares e impares

Proposición 4.19. Una sucesión (s_n) es convergente si, y solo si, la subsucesión de términos de lugar par (s_{2n}) y la subsucesión de términos de lugar impar (s_{2n-1}) son ambas convergentes y tienen el mismo límite.

Se debe observar que este último resultado se puede aplicar de forma más general. Por ejemplo, si una sucesión (s_n) cumple que las tres subsucesiones (s_{3n}) , (s_{3n-1}) y (s_{3n-2}) convergen al mismo límite l, una demostración muy similar a la empleada hace un momento nos dice que la sucesión (s_n) converge también a l.

En general, si una sucesión se puede *descomponer* en *unión* de una cantidad finita de subsucesiones que convergen todas al mismo límite l, entonces la sucesión original también debe converger a l.

El Teorema de Bolzano-Weierstrass

Teorema 4.20 (de Bolzano-Weierstrass, para sucesiones). *Toda sucesión acotada tiene una subsucesión convergente*.

El Lema de la Subsucesión Monótona

Lema 4.21 (de la Subsucesión Monótona). *Toda sucesión posee una subsucesión monótona*.

2.4. Sucesiones de Cauchy

Sucesiones de Cauchy

Definición 4.22. Una sucesión (s_n) se dice que es *de Cauchy* si para todo $\varepsilon > 0$ existe algún $n_0 \in \mathbb{N}$ (que puede depender de ε) de modo que si $m, n \in \mathbb{N}$ son tales que $m, n \ge n_0$, entonces $|s_m - s_n| < \varepsilon$.

Sucesiones convergentes y de Cauchy

Lema 4.23. Toda sucesión de Cauchy está acotada.

Teorema 4.24 (Criterio de Cauchy). *Una sucesión es convergente si, y solo si, es de Cauchy*.

e es irracional

Teorema 4.25. *e es irracional.*

Sucesiones contractivas

Definición 4.26. Se dice que una sucesión (s_n) es *contractiva* si existe una constante C, con 0 < C < 1, tal que

$$|s_{n+2} - s_{n+1}| \leqslant C|s_{n+1} - s_n|$$

para todo $n \in \mathbb{N}$. El número C se llama constante de contracción de (s_n) .

Teorema 4.27. Toda sucesión contractiva es de Cauchy, y, en consecuencia, es convergente.

3. Límites infinitos

3.1. Sucesiones divergentes

¿Qué es una sucesión divergente?

Definición 4.28.

- (I) Decimos que una sucesión (s_n) diverge $a \infty$, y escribimos $\lim_n s_n = \infty$, si para todo $M \in \mathbb{R}$ existe algún $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$ entonces $s_n \ge M$.
- (II) Decimos que una sucesión (s_n) diverge $a-\infty$, y escribimos $\lim_n s_n = -\infty$, si para todo $M \in \mathbb{R}$ existe algún $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$ entonces $s_n \le M$.
- (III) Una sucesión divergente es una sucesión que diverge a ∞ o a $-\infty$.
- (IV) Las sucesiones que no son convergentes ni divergentes se denominan sucesiones *oscilantes*.

Sucesiones monótonas no acotadas

Proposición 4.29.

- (I) Sea (s_n) una sucesión creciente. Si no está acotada superiormente, (s_n) diverge $a \infty$.
- (II) Sea (s_n) una sucesión decreciente. Si no está acotada inferiormente, (s_n) diverge $a \infty$.

Corolario 4.30. Toda sucesión monótona tiene límite (finito si está acotada, infinito en caso contrario).

Subsucesiones de sucesiones divergentes

Proposición 4.31.

- (I) Toda subsucesión de una sucesión divergente a ∞ diverge a ∞ .
- (II) Toda subsucesión de una sucesión divergente $a \infty$ diverge $a \infty$.

Proposición 4.32.

- (I) Una sucesión posee una subsucesión divergente a ∞ si, y solo si, no está acotada superiormente.
- (II) Una sucesión posee una subsucesión divergente $a \infty$ si, y solo si, no está acotada inferiormente.
- (III) Una sucesión posee una subsucesión divergente si, y solo si, no está acotada.

Corolario 4.33. Toda sucesión contiene una subsucesión con límite.

Suma con una sucesión divergente

Proposición 4.34.

- (I) Si (s_n) es una sucesión divergente $a \propto y(t_n)$ es una sucesión acotada inferiormente, la sucesión $(s_n + t_n)$ diverge $a \propto$.
- (II) Si (s_n) es una sucesión divergente $a \infty$ y (t_n) es una sucesión acotada superiormente, la sucesión $(s_n + t_n)$ diverge $a \infty$.

Corolario 4.35.

- (I) Si (s_n) es una sucesión divergente $a \propto y$ (t_n) es una sucesión convergente o divergente $a \propto$, la sucesión $(s_n + t_n)$ diverge $a \propto$. (Esto se expresa simbólicamente diciendo que $\infty + a = \infty$, si $a \in \mathbb{R}$, y que $\infty + \infty = \infty$.)
- (II) Si (s_n) es una sucesión divergente $a \infty$ y (t_n) es una sucesión convergente o divergente $a \infty$, la sucesión $(s_n + t_n)$ diverge $a \infty$. (Esto se expresa simbólicamente diciendo que $-\infty + a = -\infty$, si $a \in \mathbb{R}$, y que $-\infty \infty = -\infty$.)

Producto por una sucesión divergente

Proposición 4.36.

- (I) Si (s_n) es una sucesión divergente $a \propto y$ (t_n) es una sucesión para la que existen r > 0 y $n_0 \in \mathbb{N}$ tales que $t_n > r$ siempre que $n \geqslant n_0$, entonces la sucesión $(s_n \cdot t_n)$ diverge $a \propto$.
- (II) Si (s_n) es una sucesión divergente $a \infty$ y (t_n) es una sucesión para la que existen r > 0 y $n_0 \in \mathbb{N}$ tales que $t_n > r$ siempre que $n \ge n_0$, entonces la sucesión $(s_n \cdot t_n)$ diverge $a \infty$.
- (III) Si (s_n) es una sucesión divergente $a \propto y$ (t_n) es una sucesión para la que existen r > 0 y $n_0 \in \mathbb{N}$ tales que $t_n < -r$ siempre que $n \ge n_0$, entonces la sucesión $(s_n \cdot t_n)$ diverge $a \infty$.
- (IV) Si (s_n) es una sucesión divergente $a \infty$ y (t_n) es una sucesión para la que existen r > 0 y $n_0 \in \mathbb{N}$ tales que $t_n < -r$ siempre que $n \ge n_0$, entonces la sucesión $(s_n \cdot t_n)$ diverge $a \infty$.

Corolario 4.37.

- (I) $Si(s_n)$ es una sucesión divergente $a \propto y(t_n)$ es una sucesión convergente con límite positivo o divergente $a \propto$, la sucesión $(s_n \cdot t_n)$ diverge $a \propto$. (Simbólicamente, esto se expresa diciendo que $x \cdot a = x$ si x > 0.)
- (II) Si (s_n) es una sucesión divergente $a \infty$ y (t_n) es una sucesión convergente con límite positivo o divergente $a \infty$, la sucesión $(s_n \cdot t_n)$ diverge $a \infty$. (Simbólicamente, esto se expresa diciendo que $-\infty \cdot a = -\infty$ si a > 0.)
- (III) Si (s_n) es una sucesión divergente $a \propto y(t_n)$ es una sucesión convergente con límite negativo o divergente $a \infty$, la sucesión $(s_n \cdot t_n)$ diverge $a \infty$. (Simbólicamente, esto se expresa diciendo que $\infty \cdot a = -\infty$ si a < 0.)
- (IV) $Si(s_n)$ es una sucesión divergente $a-\infty$ y (t_n) es una sucesión convergente con límite negativo o divergente $a-\infty$, la sucesión $(s_n \cdot t_n)$ diverge $a \infty$. (Simbólicamente, esto se expresa diciendo que $-\infty \cdot a = \infty$ si a < 0.)

Inversas de sucesiones divergentes

Proposición 4.38.

- (I) Una sucesión (s_n) diverge $a \infty$ si, y solo si, tiene como mucho un número finito de términos no positivos y su inversa converge a 0. (Esto se expresa simbólicamente diciendo que $1/\infty = 0^+$ y que $1/0^+ = \infty$.)
- (II) Una sucesión (s_n) diverge $a \infty$ si, y solo si, tiene como mucho un número finito de términos no negativos y su inversa converge a 0. (Esto se expresa simbólicamente diciendo que $1/(-\infty) = 0^-$ y que $1/0^- = -\infty$.)
- (III) La sucesión de valores absolutos de una sucesión (s_n) diverge $a \propto si$, y solo si, tiene como mucho un número finito de términos nulos y su inversa converge $a \ 0$.

Corolario 4.39. Una sucesión (s_n) sin términos nulos converge a 0 si, y solo si, la sucesión $1/|s_n|$ de los valores absolutos de los inversos diverge a ∞ .

El Criterio de Comparación

Proposición 4.40 (Criterio de Comparación). Dadas dos sucesiones (s_n) y (t_n) para las que existe un $n_0 \in \mathbb{N}$ tal que $s_n \leq t_n$ si $n \geq n_0$, se verifica:

- (I) $Si(s_n)$ diverge $a \infty$, también (t_n) diverge $a \infty$.
- (II) Si (t_n) diverge $a \infty$, también (s_n) diverge $a \infty$.

3.2. La recta ampliada

Propiedades algebraicas de la recta ampliada

Definimos $\mathbb{R} = \mathbb{R} \cup \{\infty, -\infty\}$, y añadimos a nuestros dieciséis axiomas de los reales las siguientes propiedades:

- (I) Para todo $x \in \overline{\mathbb{R}}$, se tiene $-\infty \le x \le \infty$. Si $x \in \mathbb{R}$, se tiene $-\infty < x < \infty$.
- (II) Para todo $x \in \overline{\mathbb{R}}$ distinto de $-\infty$, es $\infty + x = x + \infty = \infty$.
- (III) Para todo $x \in \mathbb{R}$ distinto de ∞ , es $(-\infty) + x = x + (-\infty) = -\infty$.

(Quedan así sin definir $\infty + (-\infty)$ y $(-\infty) + \infty$.)

- (IV) Para todo $x \in \overline{\mathbb{R}}$, con x > 0, es $\infty \cdot x = x \cdot \infty = \infty$.
- (V) Para todo $x \in \overline{\mathbb{R}}$, con x < 0, es $\infty \cdot x = x \cdot \infty = -\infty$.

- (VI) Para todo $x \in \overline{\mathbb{R}}$, con x > 0, es $(-\infty) \cdot x = x \cdot (-\infty) = -\infty$.
- (VII) Para todo $x \in \overline{\mathbb{R}}$, con x < 0, es $(-\infty) \cdot x = x \cdot (-\infty) = \infty$.

(Quedan por tanto sin definir $\infty \cdot 0$, $0 \cdot \infty$, $(-\infty) \cdot 0$ y $0 \cdot (-\infty)$.)

(VIII) Si $x, y \in \overline{\mathbb{R}}$, se define x - y = x + (-1)y siempre que la suma tenga sentido.

(Quedan así sin definir $\infty - \infty$ y $(-\infty) - (-\infty)$.)

- (IX) $\frac{1}{x} = \frac{1}{-x} = 0$.
- (X) Si $x, y \in \overline{\mathbb{R}}$, se define $x/y = x \cdot (1/y)$ siempre que el producto tenga sentido.

(Quedan sin definir $\frac{1}{0}$ y por tanto $\frac{x}{0}$ cualquiera que sea $x \in \mathbb{R}$, así como $\frac{\infty}{\infty}$, $\frac{\infty}{-\infty}$, $\frac{\infty}{\infty}$ y $\frac{\infty}{-\infty}$.)

(XI)
$$|\infty| = |-\infty| = \infty$$
.

Con la estructura resultante, $\overline{\mathbb{R}}$ suele denominarse el *sistema ampliado* o la *recta ampliada* de los reales.

Propiedades algebraicas del límite (en la recta ampliada)

Teorema 4.41. Dada una sucesión (s_n) con limites l (finito o infinito) y una sucesión (t_n) con límite l' (finito o infinito), se tiene:

- (I) Si l + l' está definido en $\overline{\mathbb{R}}$, $(s_n + t_n)$ tiene límite l + l'.
- (II) Si l-l' está definido en $\overline{\mathbb{R}}$, (s_n-t_n) tiene límite l-l'.
- (III) Si $l \cdot l'$ está definido en $\overline{\mathbb{R}}$, $(s_n \cdot t_n)$ tiene límite $l \cdot l'$.
- (IV) Si l/l' está definido en $\overline{\mathbb{R}}$, (s_n/t_n) tiene límite l/l'.

3.3. Dos criterios importantes

El Criterio del Cociente

Teorema 4.42 (Criterio del Cociente). Sea (s_n) una sucesión de términos positivos. Supóngase que existe $l = \lim_n (s_{n+1}/s_n)$. Si l < 1 la sucesión (s_n) converge $a \ 0$. Si l > 1, la sucesión (s_n) diverge $a \ \infty$.

El Criterio de Stolz

Teorema 4.43. Sean (s_n) y (t_n) dos sucesiones tales que (t_n) es estrictamente monótona y se da una de las dos siguientes situaciones:

- (I) $\lim_n s_n = \lim_n t_n = 0$, o
- (II) (t_n) diverge.

Si la sucesión $\left(\frac{s_{n+1}-s_n}{t_{n+1}-t_n}\right)$ tiene límite $l \in \overline{\mathbb{R}}$, entonces la sucesión $\frac{s_n}{t_n}$ también tiene límite l.

Antes de abordar la demostración, probamos un resultado auxiliar.

Lema 4.44. Sean (s_n) y (t_n) dos sucesiones tales que (t_n) es estrictamente monótona y además existen $n_0 \in \mathbb{N}$ y $k, K \in \overline{\mathbb{R}}$ tales que

$$k < \frac{s_{n+1} - s_n}{t_{n+1} - t_n} < K \qquad \text{si } n \geqslant n_0.$$

Entonces

$$k < \frac{s_m - s_n}{t_m - t_n} < K \qquad \text{si } m > n \geqslant n_0.$$

Demostración. Las fracciones

$$\frac{s_m - s_{m-1}}{t_m - t_{m-1}}$$
, $\frac{s_{m-1} - s_{m-2}}{t_{m-1} - t_{m-2}}$, ..., $\frac{s_{n+2} - s_{n+1}}{t_{n+2} - t_{n+1}}$, $\frac{s_{n+1} - s_n}{t_{n+1} - t_n}$

están comprendidas entre k y K si $m>n\geqslant n_0$. Como (t_n) es estrictamente monótona, se puede observar que es $\frac{t_{i+1}-t_i}{t_m-t_n}>0$, si $m>i\geqslant n$. Por tanto, tenemos

$$\frac{s_m - s_n}{t_m - t_n} = \sum_{i=n}^{m-1} \frac{s_{i+1} - s_i}{t_m - t_n} = \sum_{i=n}^{m-1} \frac{s_{i+1} - s_i}{t_{i+1} - t_i} \cdot \frac{t_{i+1} - t_i}{t_m - t_n}$$

$$< K \sum_{i=n}^{m-1} \frac{t_{i+1} - t_i}{t_m - t_n} = K.$$

De la misma forma, se prueba que $\frac{s_m-s_n}{t_m-t_n}>k$. En consecuencia, tenemos

$$k < \frac{s_m - s_n}{t_m - t_n} < K.$$

4. Límites superior e inferior. Límites subsecuenciales

4.1. Límites superior e inferior

Límites superior e inferior

Definición 4.45. Sea (s_n) una sucesión. Si (s_n) está acotada superiormente llamamos *límite superior* de (s_n) al número (finito o infinito)

$$\limsup_{n} s_{n} = \lim_{n} \overline{s_{n}} \quad \text{donde} \quad \overline{s_{n}} = \sup \{ s_{k} \mid k \geqslant n \}.$$

Si (s_n) no está acotada superiormente, definimos lím sup_n $s_n = \infty$.

Definición 4.46. Sea (s_n) una sucesión. Si (s_n) está acotada inferiormente, llamamos *límite inferior* de (s_n) al número (finito o infinito)

$$\liminf_n s_n = \lim_n \underline{s_n} \qquad \text{donde} \quad \underline{s_n} = \inf\{ \, s_k \mid k \geqslant n \, \}.$$

Si (s_n) no está acotada inferiormente, definimos lím $\inf_n s_n = -\infty$.

Límites superior e inferior y límite

Proposición 4.47.

(I) (s_n) es convergente con límite $l \in \mathbb{R}$ si, y solo si,

$$\liminf_n s_n = \lim_n \sup s_n = l.$$

(II) (s_n) es divergente $a \propto si$, y solo si,

$$\liminf_{n} s_n = \infty,$$

y en tal caso también es lím $\sup_n s_n = \infty$.

(III) (s_n) es divergente $a - \infty$ si, y solo si,

$$\limsup_{n} s_n = -\infty,$$

y en tal caso también es lím $\inf_n s_n = -\infty$.

Corolario 4.48. Una sucesión (s_n) tiene límite (en $\overline{\mathbb{R}}$) si, y solo si,

$$\liminf_n s_n = \limsup_n s_n.$$

En este caso, el límite es igual al límite superior y al límite inferior. La sucesión (s_n) es oscilante si, y solo si,

$$\liminf_n s_n < \lim_n \sup s_n.$$

4.2. Límites subsecuenciales

¿Qué es un límite subsecuencial?

Definición 4.49. Se dice que un número $x \in \overline{\mathbb{R}}$ es un *límite subsecuencial* de una sucesión (s_n) si es límite de alguna subsucesión de (s_n) .

Proposición 4.50. Toda sucesión tiene al menos un límite subsecuencial.

Límite superior e inferior y límites subsecuenciales

Teorema 4.51.

- (I) El límite superior de una sucesión es el máximo (en $\overline{\mathbb{R}}$) de sus límites subsecuenciales.
- (II) El límite inferior de una sucesión es el mínimo (en $\overline{\mathbb{R}}$) de sus límites subsecuenciales.

4.3. Propiedades de los límites superior e inferior

Límites superiores o inferiores comparadas con una constante

Proposición 4.52. Sea (s_n) una sucesión.

- (I) Si lím $\sup_n s_n < c$, existe un $n_0 \in \mathbb{N}$ tal que $s_n < c$ para todo $n \ge n_0$.
- (II) Si lím $\sup_n s_n > c$, existen infinitos n para los que $s_n > c$.
- (III) Si lím $\inf_n s_n > c$, existe un $n_0 \in \mathbb{N}$ tal que $s_n > c$ para todo $n \ge n_0$.
- (IV) Si lím $\inf_n s_n < c$, existen infinitos n para los que $s_n < c$.

Límites superior e inferior y desigualdad

Proposición 4.53. Sean (s_n) y (t_n) dos sucesiones. Si para algún $n_0 \in \mathbb{N}$ es $s_n \leq t_n$ si $n \geq n_0$, entonces

$$\liminf_n s_n \leqslant \liminf_n t_n \qquad y \qquad \limsup_n s_n \leqslant \limsup_n t_n$$

Límites superior e inferior de la suma

Proposición 4.54. Sean (s_n) y (t_n) dos sucesiones. Entonces

$$\begin{split} & \liminf_n s_n + \liminf_n t_n \leqslant \liminf_n (s_n + t_n) \\ & \leqslant \liminf_n s_n + \limsup_n t_n \\ & \leqslant \limsup_n s_n + \limsup_n t_n, \end{split}$$

siempre que las sumas implicadas estén definidas.

Corolario 4.55. Sean (s_n) y (t_n) dos sucesiones y supongamos que (t_n) tiene límite. Entonces

$$\liminf_{n} (s_n + t_n) = \liminf_{n} s_n + \lim_{n} t_n$$

y

$$\limsup_n (s_n + t_n) = \limsup_n s_n + \lim_n t_n,$$

siempre que las sumas de los miembros derechos estén definidas.

Ejemplo.

$$\lim_{n} \sup \left((-1)^{n} + \frac{5n+1}{n} \right) = \lim_{n} \sup (-1)^{n} + \lim_{n} \frac{5n+1}{n} = 1 + 5 = 6.$$

Límites superior e inferior de un múltiplo

Proposición 4.56. Sea (s_n) una sucesión y c un número real. Entonces

(I) Si c > 0,

$$\liminf_{n} (cs_n) = c \liminf_{n} s_n \quad y \quad \limsup_{n} (cs_n) = c \lim_{n} \sup_{n} s_n$$

si los productos de la derecha de cada igualdad están definidos.

(II) Si c < 0,

$$\lim_{n} \inf(cs_{n}) = c \lim_{n} \sup s_{n} \quad y \quad \lim_{n} \sup(cs_{n}) = c \lim_{n} \inf s_{n}$$

si los productos de la derecha de cada igualdad están definidos.

Límites superior e inferior del producto

Proposición 4.57. Sean (s_n) y (t_n) dos sucesiones no negativas. Entonces

$$\begin{split} & \liminf_n s_n \cdot \liminf_n t_n \leqslant \liminf_n (s_n \cdot t_n) \\ & \leqslant \liminf_n s_n \cdot \limsup_n t_n \\ & \leqslant \limsup_n (s_n \cdot t_n) \\ & \leqslant \limsup_n s_n \cdot \limsup_n t_n, \end{split}$$

siempre que los productos implicados estén definidos.

Corolario 4.58. Sean (s_n) y (t_n) dos sucesiones no negativas y supongamos que (t_n) tiene límite. Entonces

$$\lim_n \inf(s_n \cdot t_n) = \lim_n \inf s_n \cdot \lim_n t_n$$

$$\lim_n \sup(s_n \cdot t_n) = \lim_n \sup s_n \cdot \lim_n t_n,$$

siempre que los productos de los miembros derechos estén definidos.

Corolario 4.59. Sea (s_n) una sucesión de términos positivos. Entonces,

$$\limsup_n \frac{1}{s_n} = \frac{1}{\liminf_n s_n}$$

$$y$$

$$\liminf_n \frac{1}{s_n} = \frac{1}{\limsup_n s_n}$$

(tomando los convenios $1/\infty = 0$, $1/0 = \infty$).

Una relación entre límites superiores e inferiores

Proposición 4.60. Si (s_n) es una sucesión positiva, se tiene

$$\liminf_n \frac{s_{n+1}}{s_n} \leqslant \liminf_n \sqrt[n]{s_n} \leqslant \limsup_n \sqrt[n]{s_n} \leqslant \limsup_n \frac{s_{n+1}}{s_n}.$$

Una consecuencia inmediata de la proposición anterior es que si existe el límite s_{n+1}/s_n , entonces también existe el límite de $\sqrt[n]{s_n}$ y coincide con el anterior.

Corolario 4.61. Sea (s_n) una sucesión de términos positivos. Supongamos que $\lim_n (s_{n+1}/s_n) = l \in \mathbb{R} \cup \{\infty\}$. Entonces también es $\lim_n \sqrt[n]{s_n} = l$.

Demostración. En efecto, utilizando la cadena de desigualdades vistas en el resultado anterior,

$$l= \liminf_n \frac{s_{n+1}}{s_n} \leqslant \liminf_n \sqrt[n]{s_n} \leqslant \limsup_n \sqrt[n]{s_n} \leqslant \limsup_n \frac{s_{n+1}}{s_n} = l.$$

En consecuencia, lím $\inf_n \sqrt[n]{s_n} =$ lím $\sup_n \sqrt[n]{s_n} = l$.

5. Apéndice: Límites de sucesiones y funciones elementales

5.1. Funciones que conmutan con el límite

El límite de la función y la función del límite

Si f(x) representa una cualquiera de las funciones e^x , $\log x$, $\sin x$, $\cos x$, $\tan x$, $\arcsin x$

Si
$$\lim_{n} s_n = l$$
, entonces $\lim_{n} f(s_n) = f(l)$

para cualquier punto l del dominio de la función y cualquier sucesión (s_n) contenida en el dominio de la función.

Otros límites

Otros límites, que se podrán justificar cuando veamos límites de funciones, son los siguientes:

- Si $\lim_n s_n = -\infty$ entonces $\lim_n e^{s_n} = 0$.
- Si $\lim_n s_n = \infty$ entonces $\lim_n e^{s_n} = \infty$.
- Si lím_n $s_n = 0$ y $s_n > 0$ para todo n, entonces lím_n $\log s_n = -\infty$.
- Si $\lim_n s_n = \infty$ y $s_n > 0$ para todo n, entonces $\lim_n \log s_n = \infty$.
- si $\lim_n s_n = -\infty$ entonces $\lim_n \arctan s_n = -\frac{\pi}{2}$.
- Si $\lim_n s_n = \infty$ entonces $\lim_n \arctan s_n = \frac{\pi}{2}$.
- Si $\lim_n s_n = 0$ y $s_n > 0$ para todo n, entonces $\lim_n s_n^r = \begin{cases} 0, & \text{si } r > 0, \\ \infty, & \text{si } r < 0. \end{cases}$
- Si $\lim_n s_n = \infty$ y $s_n > 0$ para todo n, entonces $\lim_n s_n^r = \begin{cases} \infty, & \text{si } r > 0, \\ 0, & \text{si } r < 0. \end{cases}$

5.2. Sucesiones equivalentes

¿Qué son sucesiones equivalentes?

Definición 4.62. Decimos que dos sucesiones (s_n) y (t_n) son equivalentes y escribimos $s_n \sim t_n$ si se verifica que $\lim_n s_n/t_n = 1$.

¿Para qué sirven?

Proposición 4.63. Sean (s_n) , (t_n) y (u_n) tres sucesiones, y supongamos que se tiene $s_n \sim t_n$. Entonces, $\lim_n s_n u_n = \lim_n t_n u_n$.